Количество вещества. Моль. Молярная масса (грамм-моль).

Предыдущая123456789Следующая

В предыдущих параграфах нам было удобно рассматривать реагенты и продукты в виде отдельных молекул. Мы выяснили, что для полного протекания реакции достаточно на одну молекулу СаО взять тоже одну молекулу Н2О:

А для реакции метана с кислородом на каждую молекулу метана надо брать две молекулы кислорода:

В воздухе всегда содержится достаточно кислорода для того, чтобы реакция горения метана протекала именно так, как она записана:

СН4 + 2О2 = СО2 + 2Н2О

Но представим на минуту, что нам надо сконструировать газовую горелку для подводных работ или двигатель космического корабля. Эти устройства должны работать без доступа атмосферного воздуха. Поэтому в таких конструкциях не обойтись без точного подсчета молекул реагентов, поступающих в зону горения (то есть в химическую реакцию).

Например, если в камеру сгорания космического двигателя попадает больше молекул топлива, чем может прореагировать с окислителем, то это ведет к снижению тяги двигателя и к бесполезному расходованию части драгоценного топлива.

Но для начала возьмем не “космическую” реакцию, а что-нибудь попроще. Допустим, мы знаем, что вещества А и Б реагируют между собой с образованием продукта В. Другими словами, нам известно уравнение химической реакции:

А + Б = В

Примером может послужить уже встречавшаяся нам простая реакция:

СаО + Н

2О = Са(ОН)

2

Остается взять нужные количества А(CaO) и Б (H2O) и провести реакцию. Итак, сколько нужно взвесить А и сколько Б, чтобы реакция прошла до конца и не осталось никаких исходных веществ?

Если мы возьмем одинаковые по весу образцы А и Б, то цели не достигнем – продукт В обязательно будет загрязнен одним из исходных веществ. Почему это произойдет?

Дело в том, что А и Б – разные молекулы и различаются по массе. Значит, в 1 г вещества А – одно количество молекул, а в 1 г вещества Б – другое количество молекул. При реакции между ними обязательно останутся неизрасходованными молекулы одного из исходных веществ.

Для работы химикам удобно брать вещества такими порциями, которые содержали бы одинаковое количество молекул. Допустим, химик взял порцию СаО, в которой содержится N молекул этого вещества. Затем берется некая порция воды, в которой тоже N молекул. Смешав эти две порции реагентов, химик получает порцию продукта, в которой будет тоже ровно N молекул Са(ОН)2:

СаО + Н2О = Са(ОН)2

N молекул СаО, N молекул Н2О, N молекул Са(ОН)2

После окончания реакции не останется ни СаО, ни Н2О, потому что порции реагентов содержали одинаковое число молекул – по N штук.

Легко сосчитать определенное количество яблок, конфет или монеток, но молекулы отсчитывать затруднительно.



Зато это можно сделать путем взвешивания вещества. Допустим, нам известно, что N молекул весят М г. Достаточно взвесить на весах М г этого вещества, чтобы быть уверенным, что мы отмерили N молекул этого вещества. Но как узнать величину М в граммах?

Масса молекул складывается из масс составляющих ее атомов. Относительные атомные массы (атомные веса) элементов мы можем узнать из Периодической таблицы. Атомный вес Са – 40 а.е.м., а атомный вес кислорода – 16 а.е.м. Следовательно, молекулярная масса (молекулярный вес) молекулы СаО составит:

40 а.е.м. (Ca) + 16 а.е.м. (O) = 56 а.е.м. (CaO)

Допустим, мы решили взять для проведения реакции 10 молекул СаО и 10 молекул Н2О. Удобно ли нам будет работать с такими малыми количествами вещества? Разумеется, нет.

Тогда попробуем взвесить на весах по миллиону (1000000) молекул каждого реагента. В принципе, можно сосчитать, сколько весит порция из миллиона молекул СаО. Мы знаем, что 1 а.е.м. = 1,67.10-27 кг (это значение нам встречалось в таблице 2-1 из главы 2).

Перейдем для удобства из килограммов в граммы. В граммах вес 1 а.е.м. будет таким: 1,67.10-24 г. Нетрудно умножить эту величину на 56 (число а.е.м. в молекуле СаО).

Получим:56.(1,67.10-24 г) = 93,5.10-24 г. Теперь умножим массу одной молекулы на число самих молекул (миллион). Мы получим вес (в граммах) порции из миллиона молекул СаО:

93,5.10-24 г× 1 000 000 = 93,5× 10-18 г.

Если вспомнить, что наибольшая точность обычных лабораторных весов составляет 1 мг (это всего лишь 10-3 г), то обнаружится, что и миллион молекул СаО - совсем неудобная “порция” молекул для взвешивания на весах.

Значит, надо выбрать для работы не 1 000 000 молекул, а какую-то другую, более удобную порцию из N молекул. Видимо, это число N должно быть намного больше миллиона молекул.

** Попробуем найти такое число молекул (N), с которым было бы удобно работать. Это может быть не обязательно число молекул именно СаО или Н2О. Число N должно быть таким, чтобы с его помощью было удобно "отмерять" взвешиванием ЛЮБЫЕ молекулы, атомы и вообще частицы, вес которых очень мал (измеряется в атомных единицах массы).

Возьмем одну из таких частиц – протон. Он имеет массу 1 а.е.м. (округленно). Такую же массу имеет нейтрон.

Посчитаем, какое количество протонов (или нейтронов) окажется в 1 г этих частиц. Для этого составим пропорцию:

1 частица массой 1 а.е.м – весит 1,67.10-24 г

N частиц – весят 1 г.

Отсюда:
частиц.

Оказывается, очень удобной является порция из 6× 1023 частиц (молекул, атомов, ионов и т.д.). Обозначим ее буквой N (чтобы отличать от любых других порций N). Если N равно именно такому числу частиц (6× 1023), то их вес в граммах числено равен весу этих частиц в а.е.м.

Другими словами, чтобы перейти от единиц а.е.м. к граммам, достаточно увеличить шкалу измерений в 6.1023 раз!

6× 1023 а.е.м. = 1 г

Число N = 6.1023 является как бы переводным коэффициентом из шкалы а.е.м. в шкалу граммов. Например, молекулярный вес CaO составляет 56 а.е.м. Взвесив на весах 56 г оксида кальция СаО, мы тем самым "отсчитали" 6.1023 молекул СаО. Чтобы теперь "отсчитать" для нашей реакции точно такое же количество молекул Н2О, следует взвесить на весах ровно 18 г воды:

1+1 а.е.м (вес двух атомов Н) + 16 а.е.м. (вес одного атома О) = 18 а.е.м. (H2O)

18 а.е.м. .6.1023 = 18 г.

Понятно, что взвесив 18 г воды, мы тем самым берем нужные нам 6.1023

молекул воды.

Смешав точно 56 г СаО и 18 г Н

2О, мы смешиваем порции молекул, в которых число молекул CaO и H2O абсолютно одинаково. Тем самым мы обеспечиваем полное протекание реакции. В продукте реакции – Са(ОН)2 – не должно остаться непрореагировавших молекул CaO и H2O.

Такие порции из 6.1023 структурных единиц вещества (атомов, молекул, ионов) называются МОЛЕМвещества. Таким образом, МОЛЬ – это мера количества вещества. Более точное, не округленное количество частиц вещества в 1 моле составляет 6,022045.1023 частиц. С точностью до второго знака после запятой (6,02.1023) эту величину нужно хорошенько запомнить.

МОЛЬ - это КОЛИЧЕСТВО ВЕЩЕСТВА, равное 6,02.1023 структурных единиц данного вещества –


1940048079858105.html
1940099705667401.html
    PR.RU™